Simplify $P=1-left( 364 times 363 cdots cdots frac{364-N+1}{364^N} right)$$p_n = 1- left(...

Where does the bonus feat in the cleric starting package come from?

Electoral considerations aside, what are potential benefits, for the US, of policy changes proposed by the tweet recognizing Golan annexation?

Why do we read the Megillah by night and by day?

Is there a single word describing earning money through any means?

How much character growth crosses the line into breaking the character

Problem with TransformedDistribution

Is this toilet slogan correct usage of the English language?

Request info on 12/48v PSU

How could a planet have erratic days?

Count the occurrence of each unique word in the file

How can "mimic phobia" be cured or prevented?

Why should universal income be universal?

Delivering sarcasm

Why does the Sun have different day lengths, but not the gas giants?

What should you do when eye contact makes your subordinate uncomfortable?

How to implement a feedback to keep the DC gain at zero for this conceptual passive filter?

Are the IPv6 address space and IPv4 address space completely disjoint?

Calculating Wattage for Resistor in High Frequency Application?

What was this official D&D 3.5e Lovecraft-flavored rulebook?

Why did the EU agree to delay the Brexit deadline?

When a Cleric spontaneously casts a Cure Light Wounds spell, will a Pearl of Power recover the original spell or Cure Light Wounds?

GraphicsGrid with a Label for each Column and Row

How can we generalize the fact of finite dimensional vector space to an infinte dimensional case?

The screen of my macbook suddenly broken down how can I do to recover



Simplify $P=1-left( 364 times 363 cdots cdots frac{364-N+1}{364^N} right)$


$p_n = 1- left( 1-frac{1}{365}right)left( 1-frac{2}{365}right)cdots left( 1-frac{n-1}{365}right)$ then $p_n>frac{1}{2}$ for $n>?$Calculating $left ( frac{-3}{p} right ) $ when $p=u^2+3v^2$Find $n$ such that the numerator of $1+frac{1}2+frac{1}3+cdots+frac{1}n$ is a square numberHow prove this $1times 3times 5times 7cdotstimes 2009+2times4times6cdots 2010equiv 0 (mod2011)$$left[frac n1right]+ left[frac n2right] + cdots+left[frac nnright]+left[sqrt nright]$ is evenShow that $left[alpharight]+left[alpha+frac{1}{m}right]+cdots + left[alpha+frac{m-1}{m}right] = left[malpharight]$Evaluate $left(frac{3}{11}right)$ using Euler's Criterion…Solving birthday problem without complementShow that $left(frac{1+sqrt{5}}{2}right)^5 > 10$Number of integers satisfying $left[frac{x}{100}left[frac{x}{100}right]right]=5$













0












$begingroup$


Show that after simplification of $P=1-left( 364 times 363 cdots cdots frac{364-N+1}{364^N} right)$, we get the result $$P=1-e^{-frac{N(N-1)}{2 *364}}. $$



Answer:



We have,



$P=1-left( 364 times 363 cdots cdots frac{364-N+1}{364^N} right) \ Rightarrow P=1-frac{364 times 363 cdots cdots (364-N+1)}{364 times 364 times 364 cdots cdots 364 (N times)}$



But then how to proceed ?



help me










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    This is not a simplification but an approximation.
    $endgroup$
    – kimchi lover
    Mar 14 at 0:51










  • $begingroup$
    @kimchilover, How do I do this approximation ?
    $endgroup$
    – M. A. SARKAR
    Mar 14 at 0:52








  • 2




    $begingroup$
    Use logarithms and the approximation $log(1-x) = -x -x^2/3cdots$ as explained in en.wikipedia.org/wiki/Birthday_problem
    $endgroup$
    – kimchi lover
    Mar 14 at 0:55


















0












$begingroup$


Show that after simplification of $P=1-left( 364 times 363 cdots cdots frac{364-N+1}{364^N} right)$, we get the result $$P=1-e^{-frac{N(N-1)}{2 *364}}. $$



Answer:



We have,



$P=1-left( 364 times 363 cdots cdots frac{364-N+1}{364^N} right) \ Rightarrow P=1-frac{364 times 363 cdots cdots (364-N+1)}{364 times 364 times 364 cdots cdots 364 (N times)}$



But then how to proceed ?



help me










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    This is not a simplification but an approximation.
    $endgroup$
    – kimchi lover
    Mar 14 at 0:51










  • $begingroup$
    @kimchilover, How do I do this approximation ?
    $endgroup$
    – M. A. SARKAR
    Mar 14 at 0:52








  • 2




    $begingroup$
    Use logarithms and the approximation $log(1-x) = -x -x^2/3cdots$ as explained in en.wikipedia.org/wiki/Birthday_problem
    $endgroup$
    – kimchi lover
    Mar 14 at 0:55
















0












0








0





$begingroup$


Show that after simplification of $P=1-left( 364 times 363 cdots cdots frac{364-N+1}{364^N} right)$, we get the result $$P=1-e^{-frac{N(N-1)}{2 *364}}. $$



Answer:



We have,



$P=1-left( 364 times 363 cdots cdots frac{364-N+1}{364^N} right) \ Rightarrow P=1-frac{364 times 363 cdots cdots (364-N+1)}{364 times 364 times 364 cdots cdots 364 (N times)}$



But then how to proceed ?



help me










share|cite|improve this question









$endgroup$




Show that after simplification of $P=1-left( 364 times 363 cdots cdots frac{364-N+1}{364^N} right)$, we get the result $$P=1-e^{-frac{N(N-1)}{2 *364}}. $$



Answer:



We have,



$P=1-left( 364 times 363 cdots cdots frac{364-N+1}{364^N} right) \ Rightarrow P=1-frac{364 times 363 cdots cdots (364-N+1)}{364 times 364 times 364 cdots cdots 364 (N times)}$



But then how to proceed ?



help me







combinatorics number-theory






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Mar 14 at 0:50









M. A. SARKARM. A. SARKAR

2,4291819




2,4291819








  • 1




    $begingroup$
    This is not a simplification but an approximation.
    $endgroup$
    – kimchi lover
    Mar 14 at 0:51










  • $begingroup$
    @kimchilover, How do I do this approximation ?
    $endgroup$
    – M. A. SARKAR
    Mar 14 at 0:52








  • 2




    $begingroup$
    Use logarithms and the approximation $log(1-x) = -x -x^2/3cdots$ as explained in en.wikipedia.org/wiki/Birthday_problem
    $endgroup$
    – kimchi lover
    Mar 14 at 0:55
















  • 1




    $begingroup$
    This is not a simplification but an approximation.
    $endgroup$
    – kimchi lover
    Mar 14 at 0:51










  • $begingroup$
    @kimchilover, How do I do this approximation ?
    $endgroup$
    – M. A. SARKAR
    Mar 14 at 0:52








  • 2




    $begingroup$
    Use logarithms and the approximation $log(1-x) = -x -x^2/3cdots$ as explained in en.wikipedia.org/wiki/Birthday_problem
    $endgroup$
    – kimchi lover
    Mar 14 at 0:55










1




1




$begingroup$
This is not a simplification but an approximation.
$endgroup$
– kimchi lover
Mar 14 at 0:51




$begingroup$
This is not a simplification but an approximation.
$endgroup$
– kimchi lover
Mar 14 at 0:51












$begingroup$
@kimchilover, How do I do this approximation ?
$endgroup$
– M. A. SARKAR
Mar 14 at 0:52






$begingroup$
@kimchilover, How do I do this approximation ?
$endgroup$
– M. A. SARKAR
Mar 14 at 0:52






2




2




$begingroup$
Use logarithms and the approximation $log(1-x) = -x -x^2/3cdots$ as explained in en.wikipedia.org/wiki/Birthday_problem
$endgroup$
– kimchi lover
Mar 14 at 0:55






$begingroup$
Use logarithms and the approximation $log(1-x) = -x -x^2/3cdots$ as explained in en.wikipedia.org/wiki/Birthday_problem
$endgroup$
– kimchi lover
Mar 14 at 0:55












0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3147416%2fsimplify-p-1-left-364-times-363-cdots-cdots-frac364-n1364n-right%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3147416%2fsimplify-p-1-left-364-times-363-cdots-cdots-frac364-n1364n-right%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Nidaros erkebispedøme

Birsay

Was Woodrow Wilson really a Liberal?Was World War I a war of liberals against authoritarians?Founding Fathers...