Series sum with factorial notation Announcing the arrival of Valued Associate #679: Cesar...
What is the largest species of polychaete?
How do I keep my slimes from escaping their pens?
Do working physicists consider Newtonian mechanics to be "falsified"?
How should I respond to a player wanting to catch a sword between their hands?
How do I automatically answer y in bash script?
How to stop my camera from exagerrating differences in skin colour?
How is simplicity better than precision and clarity in prose?
Biased dice probability question
I'm thinking of a number
Estimated State payment too big --> money back; + 2018 Tax Reform
Should you tell Jews they are breaking a commandment?
Classification of bundles, Postnikov towers, obstruction theory, local coefficients
Single author papers against my advisor's will?
Can a monk deflect thrown melee weapons?
I'm having difficulty getting my players to do stuff in a sandbox campaign
Fishing simulator
Unexpected result with right shift after bitwise negation
Complexity of many constant time steps with occasional logarithmic steps
Why is there no army of Iron-Mans in the MCU?
Area of a 2D convex hull
Jazz greats knew nothing of modes. Why are they used to improvise on standards?
If A makes B more likely then B makes A more likely"
New Order #5: where Fibonacci and Beatty meet at Wythoff
Stars Make Stars
Series sum with factorial notation
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Sum of a simple infinite seriesSum of infinite series with Irrational termsOn a series involving harmonic numbersHow do I calculate the sum of this infinite series? $sumlimits_{n=1}^{infty}frac{1}{4n^{2}-1}$Finding $lim_{nrightarrowinfty} sum^{n}_{k=0}left|frac{2picos(kpi(3-sqrt{5}))}{n}right|$Convergence or not of infinite series: $sum^{infty}_{n=1}frac{n}{1+n^2}$Sum of series $frac{ 4}{10}+frac{4cdot 7}{10cdot 20}+frac{4cdot 7 cdot 10}{10cdot 20 cdot 30}+cdots cdots$Sum of $ frac{1}{1cdot 3}+frac{1}{1cdot 3cdot 5}+frac{1}{1cdot 3cdot 5cdot 7}+ cdots$Infinite series containing positive and negative termsInfinite series sum which have infinite terms
$begingroup$
The sum of series
$displaystyle 1+frac{1}{1!}cdot frac{1}{4}+frac{1cdot 3}{2!}cdot frac{1}{4^2}+frac{1cdot 3 cdot 5}{3!}cdot frac{1}{4^3}+cdots $
what i try:
$$1+lim_{nrightarrow infty}sum^{n}_{r=1}frac{1cdot 3cdot cdots (2r-1)}{r!cdot 4^r}$$
$$1+lim_{nrightarrow infty}sum^{n}_{r=1}frac{(2r)!}{r!prod^{n}_{r=1}(2r)!}$$
How do i solve it Help me please
sequences-and-series
$endgroup$
add a comment |
$begingroup$
The sum of series
$displaystyle 1+frac{1}{1!}cdot frac{1}{4}+frac{1cdot 3}{2!}cdot frac{1}{4^2}+frac{1cdot 3 cdot 5}{3!}cdot frac{1}{4^3}+cdots $
what i try:
$$1+lim_{nrightarrow infty}sum^{n}_{r=1}frac{1cdot 3cdot cdots (2r-1)}{r!cdot 4^r}$$
$$1+lim_{nrightarrow infty}sum^{n}_{r=1}frac{(2r)!}{r!prod^{n}_{r=1}(2r)!}$$
How do i solve it Help me please
sequences-and-series
$endgroup$
1
$begingroup$
what is the question...?
$endgroup$
– Jneven
Mar 23 at 12:49
add a comment |
$begingroup$
The sum of series
$displaystyle 1+frac{1}{1!}cdot frac{1}{4}+frac{1cdot 3}{2!}cdot frac{1}{4^2}+frac{1cdot 3 cdot 5}{3!}cdot frac{1}{4^3}+cdots $
what i try:
$$1+lim_{nrightarrow infty}sum^{n}_{r=1}frac{1cdot 3cdot cdots (2r-1)}{r!cdot 4^r}$$
$$1+lim_{nrightarrow infty}sum^{n}_{r=1}frac{(2r)!}{r!prod^{n}_{r=1}(2r)!}$$
How do i solve it Help me please
sequences-and-series
$endgroup$
The sum of series
$displaystyle 1+frac{1}{1!}cdot frac{1}{4}+frac{1cdot 3}{2!}cdot frac{1}{4^2}+frac{1cdot 3 cdot 5}{3!}cdot frac{1}{4^3}+cdots $
what i try:
$$1+lim_{nrightarrow infty}sum^{n}_{r=1}frac{1cdot 3cdot cdots (2r-1)}{r!cdot 4^r}$$
$$1+lim_{nrightarrow infty}sum^{n}_{r=1}frac{(2r)!}{r!prod^{n}_{r=1}(2r)!}$$
How do i solve it Help me please
sequences-and-series
sequences-and-series
asked Mar 23 at 11:59
jackyjacky
1,349816
1,349816
1
$begingroup$
what is the question...?
$endgroup$
– Jneven
Mar 23 at 12:49
add a comment |
1
$begingroup$
what is the question...?
$endgroup$
– Jneven
Mar 23 at 12:49
1
1
$begingroup$
what is the question...?
$endgroup$
– Jneven
Mar 23 at 12:49
$begingroup$
what is the question...?
$endgroup$
– Jneven
Mar 23 at 12:49
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
The series under consideration is
begin{align*}
color{blue}{1+sum_{r=1}^inftyfrac{(2r-1)!!}{r!4^r}}&=1+sum_{r=1}^inftyfrac{(2r)!}{r!4^r(2r)!!}\
&=1+sum_{r=1}^inftyfrac{(2r)!}{r!r!}left(frac{1}{8}right)^r\
&=sum_{r=0}^inftybinom{2r}{r}left(frac{1}{8}right)^r\
&=left.frac{1}{sqrt{1-4z}}right|_{z=1/8}tag{1}\
&=frac{1}{sqrt{1-frac{1}{2}}}\
&,,color{blue}{=sqrt{2}}
end{align*}
In (1) we use the ordinary generating function of the central binomial coefficients evaluated at $z=1/8$.
$endgroup$
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3][]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2][]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3][]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{1 + {1 over 1!},{1 over 4} +
{1cdot 3 over 2!}, {1 over 4^{2}} +
{1cdot 3 cdot 5 over 3!},{1 over 4^{3}} + cdots} =
1 + sum_{n = 1}^{infty}{prod_{k = 0}^{n - 1}pars{2k + 1} over
n!, 4^{n}}
\[5mm] = &
1 + sum_{n = 1}^{infty}{2^{n}prod_{k = 0}^{n - 1}pars{k + 1/2} over
n!, 4^{n}} =
1 + sum_{n = 1}^{infty}{pars{1/2}^{overline{n}} over n!}
,pars{1 over 2}^{n}
\[5mm] = &
1 + sum_{n = 1}^{infty}{Gammapars{1/2 + n}/Gammapars{1/2} over n!}
,pars{1 over 2}^{n} =
sum_{n = 0}^{infty}{pars{n - 1/2}! over n!pars{-1/2}!}
,pars{1 over 2}^{n}
\[5mm] = &
sum_{n = 0}^{infty}{n - 1/2 choose n},pars{1 over 2}^{n} =
sum_{n = 0}^{infty}{-1/2 choose n},pars{-,{1 over 2}}^{n} =
bracks{1 + pars{-1 over 2}}^{-1/2}
\[5mm] = & bbx{root{2}} approx 1.4142
end{align}
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3159232%2fseries-sum-with-factorial-notation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The series under consideration is
begin{align*}
color{blue}{1+sum_{r=1}^inftyfrac{(2r-1)!!}{r!4^r}}&=1+sum_{r=1}^inftyfrac{(2r)!}{r!4^r(2r)!!}\
&=1+sum_{r=1}^inftyfrac{(2r)!}{r!r!}left(frac{1}{8}right)^r\
&=sum_{r=0}^inftybinom{2r}{r}left(frac{1}{8}right)^r\
&=left.frac{1}{sqrt{1-4z}}right|_{z=1/8}tag{1}\
&=frac{1}{sqrt{1-frac{1}{2}}}\
&,,color{blue}{=sqrt{2}}
end{align*}
In (1) we use the ordinary generating function of the central binomial coefficients evaluated at $z=1/8$.
$endgroup$
add a comment |
$begingroup$
The series under consideration is
begin{align*}
color{blue}{1+sum_{r=1}^inftyfrac{(2r-1)!!}{r!4^r}}&=1+sum_{r=1}^inftyfrac{(2r)!}{r!4^r(2r)!!}\
&=1+sum_{r=1}^inftyfrac{(2r)!}{r!r!}left(frac{1}{8}right)^r\
&=sum_{r=0}^inftybinom{2r}{r}left(frac{1}{8}right)^r\
&=left.frac{1}{sqrt{1-4z}}right|_{z=1/8}tag{1}\
&=frac{1}{sqrt{1-frac{1}{2}}}\
&,,color{blue}{=sqrt{2}}
end{align*}
In (1) we use the ordinary generating function of the central binomial coefficients evaluated at $z=1/8$.
$endgroup$
add a comment |
$begingroup$
The series under consideration is
begin{align*}
color{blue}{1+sum_{r=1}^inftyfrac{(2r-1)!!}{r!4^r}}&=1+sum_{r=1}^inftyfrac{(2r)!}{r!4^r(2r)!!}\
&=1+sum_{r=1}^inftyfrac{(2r)!}{r!r!}left(frac{1}{8}right)^r\
&=sum_{r=0}^inftybinom{2r}{r}left(frac{1}{8}right)^r\
&=left.frac{1}{sqrt{1-4z}}right|_{z=1/8}tag{1}\
&=frac{1}{sqrt{1-frac{1}{2}}}\
&,,color{blue}{=sqrt{2}}
end{align*}
In (1) we use the ordinary generating function of the central binomial coefficients evaluated at $z=1/8$.
$endgroup$
The series under consideration is
begin{align*}
color{blue}{1+sum_{r=1}^inftyfrac{(2r-1)!!}{r!4^r}}&=1+sum_{r=1}^inftyfrac{(2r)!}{r!4^r(2r)!!}\
&=1+sum_{r=1}^inftyfrac{(2r)!}{r!r!}left(frac{1}{8}right)^r\
&=sum_{r=0}^inftybinom{2r}{r}left(frac{1}{8}right)^r\
&=left.frac{1}{sqrt{1-4z}}right|_{z=1/8}tag{1}\
&=frac{1}{sqrt{1-frac{1}{2}}}\
&,,color{blue}{=sqrt{2}}
end{align*}
In (1) we use the ordinary generating function of the central binomial coefficients evaluated at $z=1/8$.
edited Mar 23 at 16:13
answered Mar 23 at 15:59
Markus ScheuerMarkus Scheuer
64.4k460152
64.4k460152
add a comment |
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3][]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2][]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3][]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{1 + {1 over 1!},{1 over 4} +
{1cdot 3 over 2!}, {1 over 4^{2}} +
{1cdot 3 cdot 5 over 3!},{1 over 4^{3}} + cdots} =
1 + sum_{n = 1}^{infty}{prod_{k = 0}^{n - 1}pars{2k + 1} over
n!, 4^{n}}
\[5mm] = &
1 + sum_{n = 1}^{infty}{2^{n}prod_{k = 0}^{n - 1}pars{k + 1/2} over
n!, 4^{n}} =
1 + sum_{n = 1}^{infty}{pars{1/2}^{overline{n}} over n!}
,pars{1 over 2}^{n}
\[5mm] = &
1 + sum_{n = 1}^{infty}{Gammapars{1/2 + n}/Gammapars{1/2} over n!}
,pars{1 over 2}^{n} =
sum_{n = 0}^{infty}{pars{n - 1/2}! over n!pars{-1/2}!}
,pars{1 over 2}^{n}
\[5mm] = &
sum_{n = 0}^{infty}{n - 1/2 choose n},pars{1 over 2}^{n} =
sum_{n = 0}^{infty}{-1/2 choose n},pars{-,{1 over 2}}^{n} =
bracks{1 + pars{-1 over 2}}^{-1/2}
\[5mm] = & bbx{root{2}} approx 1.4142
end{align}
$endgroup$
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3][]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2][]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3][]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{1 + {1 over 1!},{1 over 4} +
{1cdot 3 over 2!}, {1 over 4^{2}} +
{1cdot 3 cdot 5 over 3!},{1 over 4^{3}} + cdots} =
1 + sum_{n = 1}^{infty}{prod_{k = 0}^{n - 1}pars{2k + 1} over
n!, 4^{n}}
\[5mm] = &
1 + sum_{n = 1}^{infty}{2^{n}prod_{k = 0}^{n - 1}pars{k + 1/2} over
n!, 4^{n}} =
1 + sum_{n = 1}^{infty}{pars{1/2}^{overline{n}} over n!}
,pars{1 over 2}^{n}
\[5mm] = &
1 + sum_{n = 1}^{infty}{Gammapars{1/2 + n}/Gammapars{1/2} over n!}
,pars{1 over 2}^{n} =
sum_{n = 0}^{infty}{pars{n - 1/2}! over n!pars{-1/2}!}
,pars{1 over 2}^{n}
\[5mm] = &
sum_{n = 0}^{infty}{n - 1/2 choose n},pars{1 over 2}^{n} =
sum_{n = 0}^{infty}{-1/2 choose n},pars{-,{1 over 2}}^{n} =
bracks{1 + pars{-1 over 2}}^{-1/2}
\[5mm] = & bbx{root{2}} approx 1.4142
end{align}
$endgroup$
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3][]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2][]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3][]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{1 + {1 over 1!},{1 over 4} +
{1cdot 3 over 2!}, {1 over 4^{2}} +
{1cdot 3 cdot 5 over 3!},{1 over 4^{3}} + cdots} =
1 + sum_{n = 1}^{infty}{prod_{k = 0}^{n - 1}pars{2k + 1} over
n!, 4^{n}}
\[5mm] = &
1 + sum_{n = 1}^{infty}{2^{n}prod_{k = 0}^{n - 1}pars{k + 1/2} over
n!, 4^{n}} =
1 + sum_{n = 1}^{infty}{pars{1/2}^{overline{n}} over n!}
,pars{1 over 2}^{n}
\[5mm] = &
1 + sum_{n = 1}^{infty}{Gammapars{1/2 + n}/Gammapars{1/2} over n!}
,pars{1 over 2}^{n} =
sum_{n = 0}^{infty}{pars{n - 1/2}! over n!pars{-1/2}!}
,pars{1 over 2}^{n}
\[5mm] = &
sum_{n = 0}^{infty}{n - 1/2 choose n},pars{1 over 2}^{n} =
sum_{n = 0}^{infty}{-1/2 choose n},pars{-,{1 over 2}}^{n} =
bracks{1 + pars{-1 over 2}}^{-1/2}
\[5mm] = & bbx{root{2}} approx 1.4142
end{align}
$endgroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3][]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2][]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3][]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{1 + {1 over 1!},{1 over 4} +
{1cdot 3 over 2!}, {1 over 4^{2}} +
{1cdot 3 cdot 5 over 3!},{1 over 4^{3}} + cdots} =
1 + sum_{n = 1}^{infty}{prod_{k = 0}^{n - 1}pars{2k + 1} over
n!, 4^{n}}
\[5mm] = &
1 + sum_{n = 1}^{infty}{2^{n}prod_{k = 0}^{n - 1}pars{k + 1/2} over
n!, 4^{n}} =
1 + sum_{n = 1}^{infty}{pars{1/2}^{overline{n}} over n!}
,pars{1 over 2}^{n}
\[5mm] = &
1 + sum_{n = 1}^{infty}{Gammapars{1/2 + n}/Gammapars{1/2} over n!}
,pars{1 over 2}^{n} =
sum_{n = 0}^{infty}{pars{n - 1/2}! over n!pars{-1/2}!}
,pars{1 over 2}^{n}
\[5mm] = &
sum_{n = 0}^{infty}{n - 1/2 choose n},pars{1 over 2}^{n} =
sum_{n = 0}^{infty}{-1/2 choose n},pars{-,{1 over 2}}^{n} =
bracks{1 + pars{-1 over 2}}^{-1/2}
\[5mm] = & bbx{root{2}} approx 1.4142
end{align}
answered Mar 27 at 20:24
Felix MarinFelix Marin
68.9k7110147
68.9k7110147
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3159232%2fseries-sum-with-factorial-notation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
what is the question...?
$endgroup$
– Jneven
Mar 23 at 12:49