Understanding this description of teleportation Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Quantum algorithm for linear systems of equations (HHL09): Step 1 - Confusion regarding the usage of phase estimation algorithmQuantum algorithm for linear systems of equations (HHL09): Step 2 - What is $|Psi_0rangle$?HHL algorithm — problem with the outcome of postselectionQutrit TeleportationGeneral construction of $W_n$-stateCalculating measurement result of quantum swap circuitQuantum teleportation: second classical bit for removing entanglement?How to prepare a superposed states of odd integers from $1$ to $sqrtN$?Quantum teleportation with moving Alice and BobHow to complete this teleportation circuit? How to create a copy of $|psi〉$?

Autumning in love

Unable to start mainnet node docker container

How to set letter above or below the symbol?

Statistical model of ligand substitution

How do you clear the ApexPages.getMessages() collection in a test?

Is above average number of years spent on PhD considered a red flag in future academia or industry positions?

Need a suitable toxic chemical for a murder plot in my novel

How do I automatically answer y in bash script?

Blender game recording at the wrong time

What's the point in a preamp?

Stop battery usage [Ubuntu 18]

How to market an anarchic city as a tourism spot to people living in civilized areas?

Jazz greats knew nothing of modes. Why are they used to improvise on standards?

When is phishing education going too far?

Sorting inherited template fields

Using "nakedly" instead of "with nothing on"

Are my PIs rude or am I just being too sensitive?

How to say that you spent the night with someone, you were only sleeping and nothing else?

Replacing HDD with SSD; what about non-APFS/APFS?

Why is there no army of Iron-Mans in the MCU?

Fishing simulator

How can I protect witches in combat who wear limited clothing?

AWS IAM: Restrict Console Access to only One Instance

Writing Thesis: Copying from published papers



Understanding this description of teleportation



Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)
Announcing the arrival of Valued Associate #679: Cesar Manara
Unicorn Meta Zoo #1: Why another podcast?Quantum algorithm for linear systems of equations (HHL09): Step 1 - Confusion regarding the usage of phase estimation algorithmQuantum algorithm for linear systems of equations (HHL09): Step 2 - What is $|Psi_0rangle$?HHL algorithm — problem with the outcome of postselectionQutrit TeleportationGeneral construction of $W_n$-stateCalculating measurement result of quantum swap circuitQuantum teleportation: second classical bit for removing entanglement?How to prepare a superposed states of odd integers from $1$ to $sqrtN$?Quantum teleportation with moving Alice and BobHow to complete this teleportation circuit? How to create a copy of $|psi〉$?



.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








3












$begingroup$


In the context of quantum teleportation, my lecturer writes the following (note that I assume the reader is familiar with the circuit):



If the measurement of the first qubit is 0 and the measurement of the second qubit is 0 , then we have the state $left|phi_4right>=c_0left|000right>+c_1left|001right>=left|00right>otimes left(c_0left|0right>+c_1left|1right>right)=left|00right> otimes left|psi 'right>$.



Now to get the final teleported state we have to go through the final two gates $Z, X$.



My lecturer writes this as;



$left|gammaright>=Z^0X^0left|psi 'right>= left|psi'right>= c_0left|0right>+c_1left|1right>$



Here are my questions:



  1. Why is it that the we do not have $left|gammaright>=Z^0X^0left(left|00right>otimes left|psi 'right>right)$? I don't understand why we cut the state $left|phi_4right>$ "in half ", to use bad terminology, at this step.


  2. What does the superscript 0 on the operators refer to?


  3. In the final state again to use bad terminology we only use half of the state $left|phi_4right>$ can we always assume that the final state will be the $left|psi'right>$ part of $left|phi_4right>=left|xyright>otimesleft|psi'right>$ state, and if so what is the significance of the final step.


If my question is unanswerable due to a deep misunderstanding of the math processes here, I'd still really appreciate some clarification on whatever points can be answered and I can edit it to make more sense as I learn.










share|improve this question









New contributor




can'tcauchy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$


















    3












    $begingroup$


    In the context of quantum teleportation, my lecturer writes the following (note that I assume the reader is familiar with the circuit):



    If the measurement of the first qubit is 0 and the measurement of the second qubit is 0 , then we have the state $left|phi_4right>=c_0left|000right>+c_1left|001right>=left|00right>otimes left(c_0left|0right>+c_1left|1right>right)=left|00right> otimes left|psi 'right>$.



    Now to get the final teleported state we have to go through the final two gates $Z, X$.



    My lecturer writes this as;



    $left|gammaright>=Z^0X^0left|psi 'right>= left|psi'right>= c_0left|0right>+c_1left|1right>$



    Here are my questions:



    1. Why is it that the we do not have $left|gammaright>=Z^0X^0left(left|00right>otimes left|psi 'right>right)$? I don't understand why we cut the state $left|phi_4right>$ "in half ", to use bad terminology, at this step.


    2. What does the superscript 0 on the operators refer to?


    3. In the final state again to use bad terminology we only use half of the state $left|phi_4right>$ can we always assume that the final state will be the $left|psi'right>$ part of $left|phi_4right>=left|xyright>otimesleft|psi'right>$ state, and if so what is the significance of the final step.


    If my question is unanswerable due to a deep misunderstanding of the math processes here, I'd still really appreciate some clarification on whatever points can be answered and I can edit it to make more sense as I learn.










    share|improve this question









    New contributor




    can'tcauchy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$














      3












      3








      3





      $begingroup$


      In the context of quantum teleportation, my lecturer writes the following (note that I assume the reader is familiar with the circuit):



      If the measurement of the first qubit is 0 and the measurement of the second qubit is 0 , then we have the state $left|phi_4right>=c_0left|000right>+c_1left|001right>=left|00right>otimes left(c_0left|0right>+c_1left|1right>right)=left|00right> otimes left|psi 'right>$.



      Now to get the final teleported state we have to go through the final two gates $Z, X$.



      My lecturer writes this as;



      $left|gammaright>=Z^0X^0left|psi 'right>= left|psi'right>= c_0left|0right>+c_1left|1right>$



      Here are my questions:



      1. Why is it that the we do not have $left|gammaright>=Z^0X^0left(left|00right>otimes left|psi 'right>right)$? I don't understand why we cut the state $left|phi_4right>$ "in half ", to use bad terminology, at this step.


      2. What does the superscript 0 on the operators refer to?


      3. In the final state again to use bad terminology we only use half of the state $left|phi_4right>$ can we always assume that the final state will be the $left|psi'right>$ part of $left|phi_4right>=left|xyright>otimesleft|psi'right>$ state, and if so what is the significance of the final step.


      If my question is unanswerable due to a deep misunderstanding of the math processes here, I'd still really appreciate some clarification on whatever points can be answered and I can edit it to make more sense as I learn.










      share|improve this question









      New contributor




      can'tcauchy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      In the context of quantum teleportation, my lecturer writes the following (note that I assume the reader is familiar with the circuit):



      If the measurement of the first qubit is 0 and the measurement of the second qubit is 0 , then we have the state $left|phi_4right>=c_0left|000right>+c_1left|001right>=left|00right>otimes left(c_0left|0right>+c_1left|1right>right)=left|00right> otimes left|psi 'right>$.



      Now to get the final teleported state we have to go through the final two gates $Z, X$.



      My lecturer writes this as;



      $left|gammaright>=Z^0X^0left|psi 'right>= left|psi'right>= c_0left|0right>+c_1left|1right>$



      Here are my questions:



      1. Why is it that the we do not have $left|gammaright>=Z^0X^0left(left|00right>otimes left|psi 'right>right)$? I don't understand why we cut the state $left|phi_4right>$ "in half ", to use bad terminology, at this step.


      2. What does the superscript 0 on the operators refer to?


      3. In the final state again to use bad terminology we only use half of the state $left|phi_4right>$ can we always assume that the final state will be the $left|psi'right>$ part of $left|phi_4right>=left|xyright>otimesleft|psi'right>$ state, and if so what is the significance of the final step.


      If my question is unanswerable due to a deep misunderstanding of the math processes here, I'd still really appreciate some clarification on whatever points can be answered and I can edit it to make more sense as I learn.







      algorithm quantum-state quantum-information teleportation






      share|improve this question









      New contributor




      can'tcauchy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|improve this question









      New contributor




      can'tcauchy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|improve this question




      share|improve this question








      edited 1 hour ago









      Sanchayan Dutta

      6,67641556




      6,67641556






      New contributor




      can'tcauchy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 7 hours ago









      can'tcauchycan'tcauchy

      1285




      1285




      New contributor




      can'tcauchy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      can'tcauchy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      can'tcauchy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          1. The first two qubits stay on the sender's side, and since they are not entangled with the receiver's qubit, it's not necessary to mention them any further — we switched to discussing the receiver's side of the protocol, and all information from the first two qubits is now in measurement results.


          2. The superscripts denote the power of the operator applied: if both measurement results are 0, you don't need to apply X or Z corrections, which is the same as applying these operators raised to power 0 ($X^0 = Z^0 = I$).


          3. After measuring the first two qubits, the state will always be represented as $|xyrangle otimes |textsome staterangle$, but to convert the receiver's qubit from $|textsome staterangle$ to the state that needed to be teleported $|psi'rangle$ you'll need to apply corrections which depend on the measurement results $x$ and $y$. I believe this is what you refer to as the final step, and its goal is fixing the amplitudes of the state for it to match the state that was teleported.






          share|improve this answer











          $endgroup$








          • 1




            $begingroup$
            Minor nitpicks. If you write text within a mathematical expression it's best to use the text formatting; otherwise, the $spacing space between space letters space is space somewhat space uneven$. Moreover, 1., 2. and 3. is the only format that works for numbered lists (on SE). 1), 2) and 3) does not work. Cf. help/formatting. I've edited these things; hope you don't mind. Also, it might be useful to clarify the Alice-Bob terminology in the answer itself as the OP doesn't seem to be using it.
            $endgroup$
            – Sanchayan Dutta
            1 hour ago












          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "694"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );






          can'tcauchy is a new contributor. Be nice, and check out our Code of Conduct.









          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fquantumcomputing.stackexchange.com%2fquestions%2f5913%2funderstanding-this-description-of-teleportation%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          1. The first two qubits stay on the sender's side, and since they are not entangled with the receiver's qubit, it's not necessary to mention them any further — we switched to discussing the receiver's side of the protocol, and all information from the first two qubits is now in measurement results.


          2. The superscripts denote the power of the operator applied: if both measurement results are 0, you don't need to apply X or Z corrections, which is the same as applying these operators raised to power 0 ($X^0 = Z^0 = I$).


          3. After measuring the first two qubits, the state will always be represented as $|xyrangle otimes |textsome staterangle$, but to convert the receiver's qubit from $|textsome staterangle$ to the state that needed to be teleported $|psi'rangle$ you'll need to apply corrections which depend on the measurement results $x$ and $y$. I believe this is what you refer to as the final step, and its goal is fixing the amplitudes of the state for it to match the state that was teleported.






          share|improve this answer











          $endgroup$








          • 1




            $begingroup$
            Minor nitpicks. If you write text within a mathematical expression it's best to use the text formatting; otherwise, the $spacing space between space letters space is space somewhat space uneven$. Moreover, 1., 2. and 3. is the only format that works for numbered lists (on SE). 1), 2) and 3) does not work. Cf. help/formatting. I've edited these things; hope you don't mind. Also, it might be useful to clarify the Alice-Bob terminology in the answer itself as the OP doesn't seem to be using it.
            $endgroup$
            – Sanchayan Dutta
            1 hour ago
















          2












          $begingroup$

          1. The first two qubits stay on the sender's side, and since they are not entangled with the receiver's qubit, it's not necessary to mention them any further — we switched to discussing the receiver's side of the protocol, and all information from the first two qubits is now in measurement results.


          2. The superscripts denote the power of the operator applied: if both measurement results are 0, you don't need to apply X or Z corrections, which is the same as applying these operators raised to power 0 ($X^0 = Z^0 = I$).


          3. After measuring the first two qubits, the state will always be represented as $|xyrangle otimes |textsome staterangle$, but to convert the receiver's qubit from $|textsome staterangle$ to the state that needed to be teleported $|psi'rangle$ you'll need to apply corrections which depend on the measurement results $x$ and $y$. I believe this is what you refer to as the final step, and its goal is fixing the amplitudes of the state for it to match the state that was teleported.






          share|improve this answer











          $endgroup$








          • 1




            $begingroup$
            Minor nitpicks. If you write text within a mathematical expression it's best to use the text formatting; otherwise, the $spacing space between space letters space is space somewhat space uneven$. Moreover, 1., 2. and 3. is the only format that works for numbered lists (on SE). 1), 2) and 3) does not work. Cf. help/formatting. I've edited these things; hope you don't mind. Also, it might be useful to clarify the Alice-Bob terminology in the answer itself as the OP doesn't seem to be using it.
            $endgroup$
            – Sanchayan Dutta
            1 hour ago














          2












          2








          2





          $begingroup$

          1. The first two qubits stay on the sender's side, and since they are not entangled with the receiver's qubit, it's not necessary to mention them any further — we switched to discussing the receiver's side of the protocol, and all information from the first two qubits is now in measurement results.


          2. The superscripts denote the power of the operator applied: if both measurement results are 0, you don't need to apply X or Z corrections, which is the same as applying these operators raised to power 0 ($X^0 = Z^0 = I$).


          3. After measuring the first two qubits, the state will always be represented as $|xyrangle otimes |textsome staterangle$, but to convert the receiver's qubit from $|textsome staterangle$ to the state that needed to be teleported $|psi'rangle$ you'll need to apply corrections which depend on the measurement results $x$ and $y$. I believe this is what you refer to as the final step, and its goal is fixing the amplitudes of the state for it to match the state that was teleported.






          share|improve this answer











          $endgroup$



          1. The first two qubits stay on the sender's side, and since they are not entangled with the receiver's qubit, it's not necessary to mention them any further — we switched to discussing the receiver's side of the protocol, and all information from the first two qubits is now in measurement results.


          2. The superscripts denote the power of the operator applied: if both measurement results are 0, you don't need to apply X or Z corrections, which is the same as applying these operators raised to power 0 ($X^0 = Z^0 = I$).


          3. After measuring the first two qubits, the state will always be represented as $|xyrangle otimes |textsome staterangle$, but to convert the receiver's qubit from $|textsome staterangle$ to the state that needed to be teleported $|psi'rangle$ you'll need to apply corrections which depend on the measurement results $x$ and $y$. I believe this is what you refer to as the final step, and its goal is fixing the amplitudes of the state for it to match the state that was teleported.







          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited 49 mins ago

























          answered 1 hour ago









          Mariia MykhailovaMariia Mykhailova

          1,8651212




          1,8651212







          • 1




            $begingroup$
            Minor nitpicks. If you write text within a mathematical expression it's best to use the text formatting; otherwise, the $spacing space between space letters space is space somewhat space uneven$. Moreover, 1., 2. and 3. is the only format that works for numbered lists (on SE). 1), 2) and 3) does not work. Cf. help/formatting. I've edited these things; hope you don't mind. Also, it might be useful to clarify the Alice-Bob terminology in the answer itself as the OP doesn't seem to be using it.
            $endgroup$
            – Sanchayan Dutta
            1 hour ago













          • 1




            $begingroup$
            Minor nitpicks. If you write text within a mathematical expression it's best to use the text formatting; otherwise, the $spacing space between space letters space is space somewhat space uneven$. Moreover, 1., 2. and 3. is the only format that works for numbered lists (on SE). 1), 2) and 3) does not work. Cf. help/formatting. I've edited these things; hope you don't mind. Also, it might be useful to clarify the Alice-Bob terminology in the answer itself as the OP doesn't seem to be using it.
            $endgroup$
            – Sanchayan Dutta
            1 hour ago








          1




          1




          $begingroup$
          Minor nitpicks. If you write text within a mathematical expression it's best to use the text formatting; otherwise, the $spacing space between space letters space is space somewhat space uneven$. Moreover, 1., 2. and 3. is the only format that works for numbered lists (on SE). 1), 2) and 3) does not work. Cf. help/formatting. I've edited these things; hope you don't mind. Also, it might be useful to clarify the Alice-Bob terminology in the answer itself as the OP doesn't seem to be using it.
          $endgroup$
          – Sanchayan Dutta
          1 hour ago





          $begingroup$
          Minor nitpicks. If you write text within a mathematical expression it's best to use the text formatting; otherwise, the $spacing space between space letters space is space somewhat space uneven$. Moreover, 1., 2. and 3. is the only format that works for numbered lists (on SE). 1), 2) and 3) does not work. Cf. help/formatting. I've edited these things; hope you don't mind. Also, it might be useful to clarify the Alice-Bob terminology in the answer itself as the OP doesn't seem to be using it.
          $endgroup$
          – Sanchayan Dutta
          1 hour ago











          can'tcauchy is a new contributor. Be nice, and check out our Code of Conduct.









          draft saved

          draft discarded


















          can'tcauchy is a new contributor. Be nice, and check out our Code of Conduct.












          can'tcauchy is a new contributor. Be nice, and check out our Code of Conduct.











          can'tcauchy is a new contributor. Be nice, and check out our Code of Conduct.














          Thanks for contributing an answer to Quantum Computing Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fquantumcomputing.stackexchange.com%2fquestions%2f5913%2funderstanding-this-description-of-teleportation%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Nidaros erkebispedøme

          Birsay

          Where did Arya get these scars? Unicorn Meta Zoo #1: Why another podcast? Announcing the arrival of Valued Associate #679: Cesar Manara Favourite questions and answers from the 1st quarter of 2019Why did Arya refuse to end it?Has the pronunciation of Arya Stark's name changed?Has Arya forgiven people?Why did Arya Stark lose her vision?Why can Arya still use the faces?Has the Narrow Sea become narrower?Does Arya Stark know how to make poisons outside of the House of Black and White?Why did Nymeria leave Arya?Why did Arya not kill the Lannister soldiers she encountered in the Riverlands?What is the current canonical age of Sansa, Bran and Arya Stark?