Nordre Trondhjems amt


Nordre Trondhjems amt var eit norsk amt. Frå 1. januar 1919 er det eit fylke med namnet Nord-Trøndelag fylke. Trondhjems amt vart i 1804 delt i Nordre Trondhjems amt og Søndre Trondhjems amt.



Amtmenn |



  • 1805–1815 Caspar Conrad Rafn


  • 1815–1833 Christian Elster


  • 1833–1857 Adam Johan Frederik Poulsen Trampe


  • 1857–1866 Fredrik August Wessel-Berg


  • 1867–1884 Carsten Smith


  • 1884–1894 Lars Otto Roll Grundt


  • 1894–1898 Ole Anton Quam


  • 1898–1902 Halvor Bache Guldahl


  • 1902–1916 Torvald Løchen


  • 1916–1918 Halvor Bache Guldahl


Sjå òg |


  • Amt i Noreg

  • Trøndelag


Kjelder |



  • Stiftamtmenn, amtmenn og fylkesmenn 1814-1994 - regjeringa.no

    Spire Denne historieartikkelen er ei spire. Du kan hjelpe Nynorsk Wikipedia gjennom å utvide han.


Popular posts from this blog

Why is system upgrade showing unstable version when upgrading in backend?System Settings > System Upgrade link does not existsComposer Error While upgrading magento version 2.1.6 to 2.2.2How to upgrade magento 1.4.0.0 to above 1.6 versionIssue with upgrading Magento Version from 2.1.7 to 2.1.12Magento 2.2.5: Error on running setup: upgrade after upgrading Magento from 2.2.2 to 2.2.5Are there any Magento Code Release Notes?getting error when upgrading from Magento 2.1.5 to Magento 2.2.6Will the installed third party plugins upgrade when we upgrade Magento version via composerWhy PHP Settings Check and Checking Component Dependency showing error during Magento 2.3 upgrade?Fatal error: Out of memory (in composer) during upgrade Magento2.2.1 to Magento 2.3 when run composer update command

Integral that is continuous and looks like it converges to a geometric seriesTesting if a geometric series converges by taking limit to infinitySummation of arithmetic-geometric series of higher orderGeometric series with polynomial exponentHow to Recognize a Geometric SeriesShowing an integral equality with series over the integersDiscontinuity of a series of continuous functionsReasons why a Series ConvergesSum of infinite geometric series with two terms in summationUsing geometric series for computing IntegralsLimit of geometric series sum when $r = 1$

京都御所