Generalizing an implicit function theorem for formal power series$p$ prime, Group of order $p^n$ is cyclic...
Why did the EU agree to delay the Brexit deadline?
Folder comparison
How will losing mobility of one hand affect my career as a programmer?
Have I saved too much for retirement so far?
Did arcade monitors have same pixel aspect ratio as TV sets?
Divine apple island
Flux received by a negative charge
Generating adjacency matrices from isomorphic graphs
Greco-Roman egalitarianism
What (else) happened July 1st 1858 in London?
Greatest common substring
When quoting, must I also copy hyphens used to divide words that continue on the next line?
Open a doc from terminal, but not by its name
Customize circled numbers
How do you respond to a colleague from another team when they're wrongly expecting that you'll help them?
Why in book's example is used 言葉(ことば) instead of 言語(げんご)?
Can I use my Chinese passport to enter China after I acquired another citizenship?
What is this type of notehead called?
Engineer refusing to file/disclose patents
Can the Supreme Court overturn an impeachment?
How can Trident be so inexpensive? Will it orbit Triton or just do a (slow) flyby?
What is the grammatical term for “‑ed” words like these?
Will adding a BY-SA image to a blog post make the entire post BY-SA?
Can somebody explain Brexit in a few child-proof sentences?
Generalizing an implicit function theorem for formal power series
$p$ prime, Group of order $p^n$ is cyclic iff it is an abelian group having a unique subgroup of order $p$Finitely generated modules over a PIR (structure theorem application)An Exercise from Lang's AlgebraAlgebraic Formal Power SeriesGroup Presentation of the Direct Product.Power Series Arithmetic through Formal Power SeriesIf $A$ is a subalgebra of $M_n(mathbb{C})$, the $C^*$ modules of $A$ are semisimpleidentity of a formal power seriesTaylor expansion for formal power seriesProving that the given element is irreducible but not prime
$begingroup$
This exercise is from Greuel & Lossen & Shustin's Introduction to Singularities and Deformations, Exercise 1.2.5.
Let $finmathbf{C}langle mathbf{x},yrangle$, where $mathbf{C}langle mathbf{x},yrangle$ is the ring of convergent power series with $n+1$ variables, namely $mathbf{x}=(x_1,ldots,x_n)$ and $y$. If $fin langle yrangle +langle mathbf{x}rangle^ksubsetmathbf{C}langle mathbf{x},yrangle$ and $frac{partial f}{partial y}(mathbf{0})neq 0,$ i.e. the coefficient of $y$ is nonzero, then prove that there exists $Yin langle mathbf{x}rangle^ksubsetmathbf{C}langle mathbf{x}rangle$ such that $f(mathbf{x},Y)=0$.
My attempt: If $k=1$, then it is merely the direct consequence of implicit function theorem. However, the problem requires to prove much stronger result. First I attempted as follows:
Let $f=yg+h$ where $gin mathbf{C}langle mathbf{x},yrangle$ and $hin langle mathbf{x}rangle^k.$ Then I simply let $Y=-g^{-1}h$, but I found that $Y$ is not necessarily in $mathbf{C}langle mathbf{x}rangle$. How should I find $Y$ such that $Yin mathbf{C}langle mathbf{x}rangle$ satisfying $f(mathbf{x},Y)=0$?
Thanks in advance!
abstract-algebra analytic-geometry analytic-functions formal-power-series
$endgroup$
add a comment |
$begingroup$
This exercise is from Greuel & Lossen & Shustin's Introduction to Singularities and Deformations, Exercise 1.2.5.
Let $finmathbf{C}langle mathbf{x},yrangle$, where $mathbf{C}langle mathbf{x},yrangle$ is the ring of convergent power series with $n+1$ variables, namely $mathbf{x}=(x_1,ldots,x_n)$ and $y$. If $fin langle yrangle +langle mathbf{x}rangle^ksubsetmathbf{C}langle mathbf{x},yrangle$ and $frac{partial f}{partial y}(mathbf{0})neq 0,$ i.e. the coefficient of $y$ is nonzero, then prove that there exists $Yin langle mathbf{x}rangle^ksubsetmathbf{C}langle mathbf{x}rangle$ such that $f(mathbf{x},Y)=0$.
My attempt: If $k=1$, then it is merely the direct consequence of implicit function theorem. However, the problem requires to prove much stronger result. First I attempted as follows:
Let $f=yg+h$ where $gin mathbf{C}langle mathbf{x},yrangle$ and $hin langle mathbf{x}rangle^k.$ Then I simply let $Y=-g^{-1}h$, but I found that $Y$ is not necessarily in $mathbf{C}langle mathbf{x}rangle$. How should I find $Y$ such that $Yin mathbf{C}langle mathbf{x}rangle$ satisfying $f(mathbf{x},Y)=0$?
Thanks in advance!
abstract-algebra analytic-geometry analytic-functions formal-power-series
$endgroup$
add a comment |
$begingroup$
This exercise is from Greuel & Lossen & Shustin's Introduction to Singularities and Deformations, Exercise 1.2.5.
Let $finmathbf{C}langle mathbf{x},yrangle$, where $mathbf{C}langle mathbf{x},yrangle$ is the ring of convergent power series with $n+1$ variables, namely $mathbf{x}=(x_1,ldots,x_n)$ and $y$. If $fin langle yrangle +langle mathbf{x}rangle^ksubsetmathbf{C}langle mathbf{x},yrangle$ and $frac{partial f}{partial y}(mathbf{0})neq 0,$ i.e. the coefficient of $y$ is nonzero, then prove that there exists $Yin langle mathbf{x}rangle^ksubsetmathbf{C}langle mathbf{x}rangle$ such that $f(mathbf{x},Y)=0$.
My attempt: If $k=1$, then it is merely the direct consequence of implicit function theorem. However, the problem requires to prove much stronger result. First I attempted as follows:
Let $f=yg+h$ where $gin mathbf{C}langle mathbf{x},yrangle$ and $hin langle mathbf{x}rangle^k.$ Then I simply let $Y=-g^{-1}h$, but I found that $Y$ is not necessarily in $mathbf{C}langle mathbf{x}rangle$. How should I find $Y$ such that $Yin mathbf{C}langle mathbf{x}rangle$ satisfying $f(mathbf{x},Y)=0$?
Thanks in advance!
abstract-algebra analytic-geometry analytic-functions formal-power-series
$endgroup$
This exercise is from Greuel & Lossen & Shustin's Introduction to Singularities and Deformations, Exercise 1.2.5.
Let $finmathbf{C}langle mathbf{x},yrangle$, where $mathbf{C}langle mathbf{x},yrangle$ is the ring of convergent power series with $n+1$ variables, namely $mathbf{x}=(x_1,ldots,x_n)$ and $y$. If $fin langle yrangle +langle mathbf{x}rangle^ksubsetmathbf{C}langle mathbf{x},yrangle$ and $frac{partial f}{partial y}(mathbf{0})neq 0,$ i.e. the coefficient of $y$ is nonzero, then prove that there exists $Yin langle mathbf{x}rangle^ksubsetmathbf{C}langle mathbf{x}rangle$ such that $f(mathbf{x},Y)=0$.
My attempt: If $k=1$, then it is merely the direct consequence of implicit function theorem. However, the problem requires to prove much stronger result. First I attempted as follows:
Let $f=yg+h$ where $gin mathbf{C}langle mathbf{x},yrangle$ and $hin langle mathbf{x}rangle^k.$ Then I simply let $Y=-g^{-1}h$, but I found that $Y$ is not necessarily in $mathbf{C}langle mathbf{x}rangle$. How should I find $Y$ such that $Yin mathbf{C}langle mathbf{x}rangle$ satisfying $f(mathbf{x},Y)=0$?
Thanks in advance!
abstract-algebra analytic-geometry analytic-functions formal-power-series
abstract-algebra analytic-geometry analytic-functions formal-power-series
asked Mar 14 at 13:37
bellcirclebellcircle
1,373411
1,373411
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let $f(mathbf{x},y)=yg(mathbf{x},y)+h(mathbf{x},y),$ where $gin mathbf{C}langlemathbf{x},yrangle$ and $hin langlemathbf{x}rangle^k$. Then $f(mathbf{0},0)=0$ and by assumption $frac{partial f}{partial y}(mathbf{0},0)neq 0.$ Therefore, by implicit function theorem, there exists a $Y(mathbf{x})in langlemathbf{x}ranglesubsetmathbf{C}langle mathbf{x}rangle$ such that $f(mathbf{x},Y(mathbf{x}))=0.$ This means $Y(mathbf{x})g(mathbf{x},Y(mathbf{x}))+h(mathbf{x},Y(mathbf{x}))=0.$ Note that $g(mathbf{x},Y(mathbf{x}))$ is a unit and $h(mathbf{x},Y(mathbf{x}))in langle xrangle^k.$ Then it must be the case that $Y(mathbf{x})in langle mathbf{x}rangle^k$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3148008%2fgeneralizing-an-implicit-function-theorem-for-formal-power-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $f(mathbf{x},y)=yg(mathbf{x},y)+h(mathbf{x},y),$ where $gin mathbf{C}langlemathbf{x},yrangle$ and $hin langlemathbf{x}rangle^k$. Then $f(mathbf{0},0)=0$ and by assumption $frac{partial f}{partial y}(mathbf{0},0)neq 0.$ Therefore, by implicit function theorem, there exists a $Y(mathbf{x})in langlemathbf{x}ranglesubsetmathbf{C}langle mathbf{x}rangle$ such that $f(mathbf{x},Y(mathbf{x}))=0.$ This means $Y(mathbf{x})g(mathbf{x},Y(mathbf{x}))+h(mathbf{x},Y(mathbf{x}))=0.$ Note that $g(mathbf{x},Y(mathbf{x}))$ is a unit and $h(mathbf{x},Y(mathbf{x}))in langle xrangle^k.$ Then it must be the case that $Y(mathbf{x})in langle mathbf{x}rangle^k$.
$endgroup$
add a comment |
$begingroup$
Let $f(mathbf{x},y)=yg(mathbf{x},y)+h(mathbf{x},y),$ where $gin mathbf{C}langlemathbf{x},yrangle$ and $hin langlemathbf{x}rangle^k$. Then $f(mathbf{0},0)=0$ and by assumption $frac{partial f}{partial y}(mathbf{0},0)neq 0.$ Therefore, by implicit function theorem, there exists a $Y(mathbf{x})in langlemathbf{x}ranglesubsetmathbf{C}langle mathbf{x}rangle$ such that $f(mathbf{x},Y(mathbf{x}))=0.$ This means $Y(mathbf{x})g(mathbf{x},Y(mathbf{x}))+h(mathbf{x},Y(mathbf{x}))=0.$ Note that $g(mathbf{x},Y(mathbf{x}))$ is a unit and $h(mathbf{x},Y(mathbf{x}))in langle xrangle^k.$ Then it must be the case that $Y(mathbf{x})in langle mathbf{x}rangle^k$.
$endgroup$
add a comment |
$begingroup$
Let $f(mathbf{x},y)=yg(mathbf{x},y)+h(mathbf{x},y),$ where $gin mathbf{C}langlemathbf{x},yrangle$ and $hin langlemathbf{x}rangle^k$. Then $f(mathbf{0},0)=0$ and by assumption $frac{partial f}{partial y}(mathbf{0},0)neq 0.$ Therefore, by implicit function theorem, there exists a $Y(mathbf{x})in langlemathbf{x}ranglesubsetmathbf{C}langle mathbf{x}rangle$ such that $f(mathbf{x},Y(mathbf{x}))=0.$ This means $Y(mathbf{x})g(mathbf{x},Y(mathbf{x}))+h(mathbf{x},Y(mathbf{x}))=0.$ Note that $g(mathbf{x},Y(mathbf{x}))$ is a unit and $h(mathbf{x},Y(mathbf{x}))in langle xrangle^k.$ Then it must be the case that $Y(mathbf{x})in langle mathbf{x}rangle^k$.
$endgroup$
Let $f(mathbf{x},y)=yg(mathbf{x},y)+h(mathbf{x},y),$ where $gin mathbf{C}langlemathbf{x},yrangle$ and $hin langlemathbf{x}rangle^k$. Then $f(mathbf{0},0)=0$ and by assumption $frac{partial f}{partial y}(mathbf{0},0)neq 0.$ Therefore, by implicit function theorem, there exists a $Y(mathbf{x})in langlemathbf{x}ranglesubsetmathbf{C}langle mathbf{x}rangle$ such that $f(mathbf{x},Y(mathbf{x}))=0.$ This means $Y(mathbf{x})g(mathbf{x},Y(mathbf{x}))+h(mathbf{x},Y(mathbf{x}))=0.$ Note that $g(mathbf{x},Y(mathbf{x}))$ is a unit and $h(mathbf{x},Y(mathbf{x}))in langle xrangle^k.$ Then it must be the case that $Y(mathbf{x})in langle mathbf{x}rangle^k$.
answered Mar 14 at 14:40
bellcirclebellcircle
1,373411
1,373411
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3148008%2fgeneralizing-an-implicit-function-theorem-for-formal-power-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown