Generalizing an implicit function theorem for formal power series$p$ prime, Group of order $p^n$ is cyclic...

Why did the EU agree to delay the Brexit deadline?

Folder comparison

How will losing mobility of one hand affect my career as a programmer?

Have I saved too much for retirement so far?

Did arcade monitors have same pixel aspect ratio as TV sets?

Divine apple island

Flux received by a negative charge

Generating adjacency matrices from isomorphic graphs

Greco-Roman egalitarianism

What (else) happened July 1st 1858 in London?

Greatest common substring

When quoting, must I also copy hyphens used to divide words that continue on the next line?

Open a doc from terminal, but not by its name

Customize circled numbers

How do you respond to a colleague from another team when they're wrongly expecting that you'll help them?

Why in book's example is used 言葉(ことば) instead of 言語(げんご)?

Can I use my Chinese passport to enter China after I acquired another citizenship?

What is this type of notehead called?

Engineer refusing to file/disclose patents

Can the Supreme Court overturn an impeachment?

How can Trident be so inexpensive? Will it orbit Triton or just do a (slow) flyby?

What is the gram­mat­i­cal term for “‑ed” words like these?

Will adding a BY-SA image to a blog post make the entire post BY-SA?

Can somebody explain Brexit in a few child-proof sentences?



Generalizing an implicit function theorem for formal power series


$p$ prime, Group of order $p^n$ is cyclic iff it is an abelian group having a unique subgroup of order $p$Finitely generated modules over a PIR (structure theorem application)An Exercise from Lang's AlgebraAlgebraic Formal Power SeriesGroup Presentation of the Direct Product.Power Series Arithmetic through Formal Power SeriesIf $A$ is a subalgebra of $M_n(mathbb{C})$, the $C^*$ modules of $A$ are semisimpleidentity of a formal power seriesTaylor expansion for formal power seriesProving that the given element is irreducible but not prime













0












$begingroup$


This exercise is from Greuel & Lossen & Shustin's Introduction to Singularities and Deformations, Exercise 1.2.5.





Let $finmathbf{C}langle mathbf{x},yrangle$, where $mathbf{C}langle mathbf{x},yrangle$ is the ring of convergent power series with $n+1$ variables, namely $mathbf{x}=(x_1,ldots,x_n)$ and $y$. If $fin langle yrangle +langle mathbf{x}rangle^ksubsetmathbf{C}langle mathbf{x},yrangle$ and $frac{partial f}{partial y}(mathbf{0})neq 0,$ i.e. the coefficient of $y$ is nonzero, then prove that there exists $Yin langle mathbf{x}rangle^ksubsetmathbf{C}langle mathbf{x}rangle$ such that $f(mathbf{x},Y)=0$.





My attempt: If $k=1$, then it is merely the direct consequence of implicit function theorem. However, the problem requires to prove much stronger result. First I attempted as follows:



Let $f=yg+h$ where $gin mathbf{C}langle mathbf{x},yrangle$ and $hin langle mathbf{x}rangle^k.$ Then I simply let $Y=-g^{-1}h$, but I found that $Y$ is not necessarily in $mathbf{C}langle mathbf{x}rangle$. How should I find $Y$ such that $Yin mathbf{C}langle mathbf{x}rangle$ satisfying $f(mathbf{x},Y)=0$?



Thanks in advance!










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    This exercise is from Greuel & Lossen & Shustin's Introduction to Singularities and Deformations, Exercise 1.2.5.





    Let $finmathbf{C}langle mathbf{x},yrangle$, where $mathbf{C}langle mathbf{x},yrangle$ is the ring of convergent power series with $n+1$ variables, namely $mathbf{x}=(x_1,ldots,x_n)$ and $y$. If $fin langle yrangle +langle mathbf{x}rangle^ksubsetmathbf{C}langle mathbf{x},yrangle$ and $frac{partial f}{partial y}(mathbf{0})neq 0,$ i.e. the coefficient of $y$ is nonzero, then prove that there exists $Yin langle mathbf{x}rangle^ksubsetmathbf{C}langle mathbf{x}rangle$ such that $f(mathbf{x},Y)=0$.





    My attempt: If $k=1$, then it is merely the direct consequence of implicit function theorem. However, the problem requires to prove much stronger result. First I attempted as follows:



    Let $f=yg+h$ where $gin mathbf{C}langle mathbf{x},yrangle$ and $hin langle mathbf{x}rangle^k.$ Then I simply let $Y=-g^{-1}h$, but I found that $Y$ is not necessarily in $mathbf{C}langle mathbf{x}rangle$. How should I find $Y$ such that $Yin mathbf{C}langle mathbf{x}rangle$ satisfying $f(mathbf{x},Y)=0$?



    Thanks in advance!










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      This exercise is from Greuel & Lossen & Shustin's Introduction to Singularities and Deformations, Exercise 1.2.5.





      Let $finmathbf{C}langle mathbf{x},yrangle$, where $mathbf{C}langle mathbf{x},yrangle$ is the ring of convergent power series with $n+1$ variables, namely $mathbf{x}=(x_1,ldots,x_n)$ and $y$. If $fin langle yrangle +langle mathbf{x}rangle^ksubsetmathbf{C}langle mathbf{x},yrangle$ and $frac{partial f}{partial y}(mathbf{0})neq 0,$ i.e. the coefficient of $y$ is nonzero, then prove that there exists $Yin langle mathbf{x}rangle^ksubsetmathbf{C}langle mathbf{x}rangle$ such that $f(mathbf{x},Y)=0$.





      My attempt: If $k=1$, then it is merely the direct consequence of implicit function theorem. However, the problem requires to prove much stronger result. First I attempted as follows:



      Let $f=yg+h$ where $gin mathbf{C}langle mathbf{x},yrangle$ and $hin langle mathbf{x}rangle^k.$ Then I simply let $Y=-g^{-1}h$, but I found that $Y$ is not necessarily in $mathbf{C}langle mathbf{x}rangle$. How should I find $Y$ such that $Yin mathbf{C}langle mathbf{x}rangle$ satisfying $f(mathbf{x},Y)=0$?



      Thanks in advance!










      share|cite|improve this question









      $endgroup$




      This exercise is from Greuel & Lossen & Shustin's Introduction to Singularities and Deformations, Exercise 1.2.5.





      Let $finmathbf{C}langle mathbf{x},yrangle$, where $mathbf{C}langle mathbf{x},yrangle$ is the ring of convergent power series with $n+1$ variables, namely $mathbf{x}=(x_1,ldots,x_n)$ and $y$. If $fin langle yrangle +langle mathbf{x}rangle^ksubsetmathbf{C}langle mathbf{x},yrangle$ and $frac{partial f}{partial y}(mathbf{0})neq 0,$ i.e. the coefficient of $y$ is nonzero, then prove that there exists $Yin langle mathbf{x}rangle^ksubsetmathbf{C}langle mathbf{x}rangle$ such that $f(mathbf{x},Y)=0$.





      My attempt: If $k=1$, then it is merely the direct consequence of implicit function theorem. However, the problem requires to prove much stronger result. First I attempted as follows:



      Let $f=yg+h$ where $gin mathbf{C}langle mathbf{x},yrangle$ and $hin langle mathbf{x}rangle^k.$ Then I simply let $Y=-g^{-1}h$, but I found that $Y$ is not necessarily in $mathbf{C}langle mathbf{x}rangle$. How should I find $Y$ such that $Yin mathbf{C}langle mathbf{x}rangle$ satisfying $f(mathbf{x},Y)=0$?



      Thanks in advance!







      abstract-algebra analytic-geometry analytic-functions formal-power-series






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Mar 14 at 13:37









      bellcirclebellcircle

      1,373411




      1,373411






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          Let $f(mathbf{x},y)=yg(mathbf{x},y)+h(mathbf{x},y),$ where $gin mathbf{C}langlemathbf{x},yrangle$ and $hin langlemathbf{x}rangle^k$. Then $f(mathbf{0},0)=0$ and by assumption $frac{partial f}{partial y}(mathbf{0},0)neq 0.$ Therefore, by implicit function theorem, there exists a $Y(mathbf{x})in langlemathbf{x}ranglesubsetmathbf{C}langle mathbf{x}rangle$ such that $f(mathbf{x},Y(mathbf{x}))=0.$ This means $Y(mathbf{x})g(mathbf{x},Y(mathbf{x}))+h(mathbf{x},Y(mathbf{x}))=0.$ Note that $g(mathbf{x},Y(mathbf{x}))$ is a unit and $h(mathbf{x},Y(mathbf{x}))in langle xrangle^k.$ Then it must be the case that $Y(mathbf{x})in langle mathbf{x}rangle^k$.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3148008%2fgeneralizing-an-implicit-function-theorem-for-formal-power-series%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            Let $f(mathbf{x},y)=yg(mathbf{x},y)+h(mathbf{x},y),$ where $gin mathbf{C}langlemathbf{x},yrangle$ and $hin langlemathbf{x}rangle^k$. Then $f(mathbf{0},0)=0$ and by assumption $frac{partial f}{partial y}(mathbf{0},0)neq 0.$ Therefore, by implicit function theorem, there exists a $Y(mathbf{x})in langlemathbf{x}ranglesubsetmathbf{C}langle mathbf{x}rangle$ such that $f(mathbf{x},Y(mathbf{x}))=0.$ This means $Y(mathbf{x})g(mathbf{x},Y(mathbf{x}))+h(mathbf{x},Y(mathbf{x}))=0.$ Note that $g(mathbf{x},Y(mathbf{x}))$ is a unit and $h(mathbf{x},Y(mathbf{x}))in langle xrangle^k.$ Then it must be the case that $Y(mathbf{x})in langle mathbf{x}rangle^k$.






            share|cite|improve this answer









            $endgroup$


















              0












              $begingroup$

              Let $f(mathbf{x},y)=yg(mathbf{x},y)+h(mathbf{x},y),$ where $gin mathbf{C}langlemathbf{x},yrangle$ and $hin langlemathbf{x}rangle^k$. Then $f(mathbf{0},0)=0$ and by assumption $frac{partial f}{partial y}(mathbf{0},0)neq 0.$ Therefore, by implicit function theorem, there exists a $Y(mathbf{x})in langlemathbf{x}ranglesubsetmathbf{C}langle mathbf{x}rangle$ such that $f(mathbf{x},Y(mathbf{x}))=0.$ This means $Y(mathbf{x})g(mathbf{x},Y(mathbf{x}))+h(mathbf{x},Y(mathbf{x}))=0.$ Note that $g(mathbf{x},Y(mathbf{x}))$ is a unit and $h(mathbf{x},Y(mathbf{x}))in langle xrangle^k.$ Then it must be the case that $Y(mathbf{x})in langle mathbf{x}rangle^k$.






              share|cite|improve this answer









              $endgroup$
















                0












                0








                0





                $begingroup$

                Let $f(mathbf{x},y)=yg(mathbf{x},y)+h(mathbf{x},y),$ where $gin mathbf{C}langlemathbf{x},yrangle$ and $hin langlemathbf{x}rangle^k$. Then $f(mathbf{0},0)=0$ and by assumption $frac{partial f}{partial y}(mathbf{0},0)neq 0.$ Therefore, by implicit function theorem, there exists a $Y(mathbf{x})in langlemathbf{x}ranglesubsetmathbf{C}langle mathbf{x}rangle$ such that $f(mathbf{x},Y(mathbf{x}))=0.$ This means $Y(mathbf{x})g(mathbf{x},Y(mathbf{x}))+h(mathbf{x},Y(mathbf{x}))=0.$ Note that $g(mathbf{x},Y(mathbf{x}))$ is a unit and $h(mathbf{x},Y(mathbf{x}))in langle xrangle^k.$ Then it must be the case that $Y(mathbf{x})in langle mathbf{x}rangle^k$.






                share|cite|improve this answer









                $endgroup$



                Let $f(mathbf{x},y)=yg(mathbf{x},y)+h(mathbf{x},y),$ where $gin mathbf{C}langlemathbf{x},yrangle$ and $hin langlemathbf{x}rangle^k$. Then $f(mathbf{0},0)=0$ and by assumption $frac{partial f}{partial y}(mathbf{0},0)neq 0.$ Therefore, by implicit function theorem, there exists a $Y(mathbf{x})in langlemathbf{x}ranglesubsetmathbf{C}langle mathbf{x}rangle$ such that $f(mathbf{x},Y(mathbf{x}))=0.$ This means $Y(mathbf{x})g(mathbf{x},Y(mathbf{x}))+h(mathbf{x},Y(mathbf{x}))=0.$ Note that $g(mathbf{x},Y(mathbf{x}))$ is a unit and $h(mathbf{x},Y(mathbf{x}))in langle xrangle^k.$ Then it must be the case that $Y(mathbf{x})in langle mathbf{x}rangle^k$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Mar 14 at 14:40









                bellcirclebellcircle

                1,373411




                1,373411






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3148008%2fgeneralizing-an-implicit-function-theorem-for-formal-power-series%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Nidaros erkebispedøme

                    Birsay

                    Was Woodrow Wilson really a Liberal?Was World War I a war of liberals against authoritarians?Founding Fathers...